
Fine-grained, Lightweight
Resource Metric Collection
in Mobile Edge Computing

Ke-Jou Hsu

Advisor: Ada Gavrilovska

What is Mobile Edge Computing (MEC)?

• More computing resources than client devices
• Reduced communication cost than cloud
• Flexible service deployment across edge-cloud

1~20 ms

5~100 ms

1

Cloud Mobile Edge

Network distance to clients Far Close

Resource Heterogenity Low High

Resource capacity High Low

Strict latency request Low High

Both of them are multi-tenancy environments, and supporting friendly deployment interfaces

Difference between MEC and Cloud

2

For example, ML-based video analytics service

image frame

image frame

feedback

metadata

analytics resultanalytics result

MEC provides proximity benefit to clients

3

Emerging MEC-targeted applications
Augmented/Virtual/Extended Reality

(AR/VR/XR)IoT Video Analytics (ML)

Industrial and Autonomous
Systems (IA)

Content Delivery Network
 (CDN)

360° Video Streaming
(Video360)

4

How to deploy them at edge?

Put MEC workloads at edge and get benefit right away?

Happily ever after?

5

Resource management is an
important/popular topic on system

Load
Balancer Autoscaler Scheduler

Resource management modulesMEC Service Provider

MEC System Provider

System control plane

Application data plane

Resource metrics

Monitor
6

Let’s evaluate the process at edge

Load
Balancer Autoscaler Scheduler

Resource metrics

Monitor

1. Deploy the workload with full capacity of the system

2. Measure the performance + monitor collects the metrics
of resource utilization

3. Redeploy the workload with the metrics from the monitor

4. Verify/compare the performance from (2)

1.

2.

3.

4.

If the performance is similar ->
the metrics from monitor is reliable

7

N
or

m
al

ize
d

re
qu

es
t r

at
e

(%
)

0

10

20

30

ML Video360 XR IA

00.55

25.94

3.77

Normalized to the performance of
resource-unlimited deployment

Cloud-native monitor cannot
find suitable numbers for MEC workload

34000 35000 36000 37000 38000

Timestamp (ms)

2

4

6

8

C
PU

 (1
00

%
)

5 sec 5 msec

42000 43000 44000 45000 46000

Timestamp (ms)

0

20

40

60

KB
/m

s

5 sec 5 msec

Raw data comparison between different
query granularity

CPU Egress BW

Problem 1: Losing information of spiky usage in
coarser granularity metric collection.

Using Prometheus’s metrics for resource allocation

8

Edge is more heterogenous

Even if workload or workload-combination doesn’t change, MEC environment could change
= one deployment decision cannot fit everywhere

Last mile network Telco operated network

< 5 ms 5~20 ms

Wavelength { t3.{medium, xlarge} 
r5.2xlarge 
g4dn.2xlarge

Customer owned
Private, dedicated 

Distributed

Service provider owned
Sharable

Centralized, secured

Problem 2: A single profile for every edge is not feasible
 — wasting resources or reducing performance 9

Problem 1: Losing information of spiky usage in coarser granularity metric collection

Problem 2: A single profile for every edge is not feasible

Require a new monitor designed for MEC

Target: fine-grained metric collection + need to profile frequently

10

Target: fine-grained metric collection + need to profile frequently

Modifying the existed cloud-native
monitoring system to solve the problem?

 Changing the scrape interval to a smaller one, then query faster? e.g. Prometheus or K8s’s Metrics Server

Container Network Interface

MEC App
Server

vRAN

MEC nodevRAN node

USRP

Metrics
serverMEC ApplicationVirtual Network

Function

Monitoring Function

kubelet

cAdvisor

cgroup

Node Exporter

K8s node

Minimal configuration of
scraping period should be
15 seconds

cAdvisor in kubelet hardcoded
15-sec for querying cgroup data

11

Target: fine-grained metric collection + need to profile frequently

Modifying the existed cloud-native
monitoring system to solve the problem?

• Every node needs a monitoring agent

• Covering nearly all types of metrics
(e.g. up to 100~ in Prometheus for a single container)

• Covering all workloads

• Monitoring system is “always-on”

AWS CloudWatch

1. Configure system’s scrape interval to subsecond?
2. Update the source code and recompile the system?
3. Revisit existing monitoring system design?

Design limitation or depending on other system

No guarantee system correctness

Incurring high resource consumption

12

millisecond-level query lightweight, low-costeasy to use

1. Easily dispatch
2. Transparent,

straightforward interface

3. Minimal system/package dependency
4. Running on demand
5. Customizing each run for workload

Colibri: the resource profiler for MEC
Target: fine-grained metric collection + need to profile frequently

13

 Colibr i Job
Colibr i API Server

cgroup

kube-apiserver

Upstream UI and system management

Docker

Low-level metr ics querying funct ions

docker run ...

docker logs ...

Metric Fetcher

 Analyzer

Config Interface

System structure of Colibri

14

 Colibr i Job
Colibr i API Server

cgroup

kube-apiserver

Upstream UI and system management

Docker

Low-level metr ics querying funct ions

docker run ...

docker logs ...

Metric Fetcher

 Analyzer

Config Interface

 Easily dispatch: Colibri Job is containerized, and one for each workload

 Running on demand: Each Job starts by request, and terminated automatically

System structure of Colibri

14

 Colibr i Job
Colibr i API Server

cgroup

kube-apiserver

Upstream UI and system management

Docker

Low-level metr ics querying funct ions

docker run ...

docker logs ...

Metric Fetcher

 Analyzer

Config Interface Transparent, straightforward interface:
simple, necessary flags for each profiling

no additional layers for reading the statistics

System structure of Colibri

14

 Colibr i Job
Colibr i API Server

cgroup

kube-apiserver

Upstream UI and system management

Docker

Low-level metr ics querying funct ions

docker run ...

docker logs ...

Metric Fetcher

 Analyzer

Config Interface

 Customizing each run: further reducing query overhead

#iteration / metric type / scrape interval …

System structure of Colibri

14

 Colibr i Job
Colibr i API Server

cgroup

kube-apiserver

Upstream UI and system management

Docker

Low-level metr ics querying funct ions

docker run ...

docker logs ...

Metric Fetcher

 Analyzer

Config Interface
 Minimal system/package dependency: only require Linux

System structure of Colibri

14

 Colibr i Job
Colibr i API Server

cgroup

kube-apiserver

Upstream UI and system management

Docker

Low-level metr ics querying funct ions

docker run ...

docker logs ...

Metric Fetcher

 Analyzer

Config Interface

Metric query
in millisec

System structure of Colibri

14

Accurate resource allocation with Colibri

99.39 100 99.58 99.87

95.62 74.06 99.03 99.87

ML Video360 XR IA
0

20

40

60

80

100

N
or

m
al

ize
d

re
qu

es
t r

at
e

(%
) Colibri - 10 ms Prometheus - 15 sec (Fig 1)

Using Colibri’s query data to deploy workloads

• Outperform second-level query across different workloads
• Not all metrics need high resolution query
• Some slight difference of requested resource can cause obvious performance gap

ML Video360 XR IA
0

20

40

60

80

100

Sa
ve

d
re

so
ur

ce
 (%

)

Prometheus CPU RAM Ingress bandwidth Egress bandwidth

Deployment profile comparison:
Colibri vs. Prometheus

15

cAdvisor

kubelet

Node

Prometheus Prometheus
Adapter

Metrics Server

Colibri Job

kube-apiserver

Push analytic result

cgroup

Colibri API server

Overview of metric querying pipeline:
comparing with Prometheus and Kubernetes Metrics Server

Profiling cost comparison

16

cAdvisor

kubelet

Node

Prometheus Prometheus
Adapter

Metrics Server

Colibri Job

kube-apiserver

Push analytic result

cgroup

Colibri API server

Comparing the API interface/central manager

Colibri’s resource cost is low

17

cAdvisor

kubelet

Node

Prometheus Prometheus
Adapter

Metrics Server

Colibri Job

kube-apiserver

Push analytic result

cgroup

Colibri API server

Comparing the querying worker

Colibri’s resource cost is low

18

• MEC QoS relies on accurate, lightweight profiling process

• Colibri is fine-grained (millisecond-level metric query) and lightweight
resource profiling system for MEC workload and environments

• Exploring more use cases to improve Colibri’s system integration and
scalability

Summary

19

Thank you !

