Georgia Institute
of Technology

Fine-grained, Lightweight
Resource Metric Collection
In Mobile Edge Computing

Ke-Jou Hsu

Advisor: Ada Gavrilovska



What is Mobile Edge Computing (MEC)?

amazon
webservices* *

f) Google
Cloud Platform/ Microsoft

Azure

e More computing resources than client devices
e Reduced communication cost than cloud
e Flexible service deployment across edge-cloud



Difference between MEC and Cloud

Both of them are multi-tenancy environments, and supporting friendly deployment interfaces

Network distance to clients Far Close
Resource Heterogenity Low High
Resource capacity High Low
Strict latency request Low High



MEC provides proximity benefit to clients

For example, ML-based video analytics service

Image frame

amazon
webservices® ©

Google
Cloud Platform/

Microsoft
Azure

analytics result



Emerging MEC-targeted applications

A irtual/E Reali
loT Video Analytics (ML) “gme"te"/\(’ A:;‘\‘;‘g /)2‘;‘)*"“'“' eality

Building

360° Video Streaming Industrial and Autonomous
(CDN) (Video360) \ Systems (lA)




How to deploy them at edge?

web services™

Put MEC workloads at edge and get benefit right away?



Resource managementis an
important/popular topic on system

'n| MEC Service Provider Resource management modules

: Load
¢ MEC System Provider Autoscaler || Scheduler
’n‘ Balancer

Resource metrics

Monitor




Let’s evaluate the process at edge

Load Autoscaler Scheduler
Balancer
Resource metrics

Monitor

1. Deploy the workload with full capacity of the system

2. Measure the performance + monitor collects the metrics
of resource utilization

3. Redeploy the workload with the metrics from the monitor

4. Verify/compare the performance from (2)

If the performance is similar ->
the metrics from monitor is reliable



Cloud-native monitor cannot

find suitable numbers for MEC workload

Using Prometheus’s metrics for resource allocation

N QL
o o

Normalized request rate (%)
o

o

Normalized to the performance of Raw data comparison between different
resource-unlimited deployment query granularity

| CPU Egress BW
25.94 ol - 5sec * S msec | ".'5860 * 5 msec N

v | o .. ....: °~...:,...“.. ,...o.o..'a |1,
§ I :o'o ... °o® | §40_. (R oo e 1l (I L{ft
54—- ..' I X . vl .
O | it i f Il it (IiimtHtht R

b | I | .. o o

|||||||||||||||||||||||||||||||||||||||||
00000000000000000000

3.77

0.55 0 Problem 1: Losing information of spiky usage in
ML Video360 YR A coarser granularity metric collection.




Edge iIs more heterogenous

Customer owned Service provider owned
Private, dedicated Sharable
Distributed Centralized, secured

dWs$s

v)

Wavelength {

Last mile network Telco operated network

<d5ms 5~20 ms
Even if workload or workload-combination doesn’t change, MEC environment could change
= one deployment decision cannot fit everywhere

t3.{medium, xlarge}
r5.2xlarge
g4dn.2xlarge

Problem 2: A single profile for every edge is not feasible
— wasting resources or reducing performance



Require a new monitor designed for MEC

Problem 1: Losing information of spiky usage in coarser granularity metric collection

Problem 2: A single profile for every edge is not feasible

Target: fine-grained metric collection + need to profile frequently



Modifying the existed cloud-native
monitoring system to solve the problem?

Target: fine-grained metric collection + need to profile frequently

Changing the scrape interval to a smaller one, then query faster? e.g. Prometheus or K8s’s Metrics Server

Monitoring Function

O 9.
Metrics

VirtIL:JSLCNtei(’g\;]vork MEC Application Promethe server Minim_al confjguration of
scraping period should be

% 15 seconds
vRAN MEC App
Server

s . kubernetes
@%h PPPPPPP

kubelet

cAdvisor Iin kubelet hardcoded

kubernetes cAdvisor/v 15-sec for querying cgroup data
vRAN node MEC node cgroup

(=3

( L




Modifying the existed cloud-native
monitoring system to solve the problem?

Target: fine-grained metric collection + need to profile frequently

1. Configure system’s scrape interval to subsecond? X Design limitation or depending on other system

2. Update the source code and recompile the system? ¥ No guarantee system correctness

3. Revisit existing monitoring system design? X Incurring high resource consumption

v ° °
<> newrelic e Every node needs a monitoring agent
Prometheus e Covering nearly all types of metrics
/ZABB| X (e.g. up to 100~ in Prometheus for a single container)
y < @ e Covering all workloads

elastic = DATADOG e Monitoring system is always-on



Colibri: the resource profiler for MEC

Target: fine-grained metric collection + need to profile frequently

millisecond-level query easy to use lLightweight, low-cost
1. Easily dispatch 3. Minimal system/package dependency
2. Transparent, 4. Running on demand

straightforward interface 5. Customizing each run for workload



System structure of Colibri

Upstream UI and system management

docker run ...
e
docker logs ...

————————————————————————————————

' * : Colibri Job '
|

Colibri API Server |p. 5 Contfig Interface |
:
. '

7/
________________________________



System structure of Colibri

Easily dispatch: Colibri Job is containerized, and one for each workload

Running on demand: Each Job starts by request, and terminated automatically

: i : Colibri Job |

| Config Interface |'
'

7/
________________________________




System structure of Colibri

Upstream UI and system management

docker run ...
e
docker logs ...
A

Colibri API Server Transparent, straightforward interface:
l simple, necessary flags for each profiling

no additional layers for reading the statistics



System structure of Colibri

.>i_.. Config Interface |

| /
#iteration / metric type / scrape interval ..

Customizing each run: further reducing query overhead



System structure of Colibri

Upstream UI and system management

_ docker run ...

_ani y 4
A
S ——

Minimal system/package dependency: only require Linux

Low-level metrics querying functions



System structure of Colibri

Upstream UI and system management

docker run ...
e
docker logs ...

————————————————————————————————

l
| l
Colibri API Server |p. 5 Config Interface | '
: , | Metric Fetcher
I .7
.

—————————————————————————

Low-level metrics querying functions | cgroup l

Metric query
in millisec



Accurate resource allocation with Colibri

Deployment profile comparison:

Using Colibri’s query data to deploy workloads Colibri vs. Prometheus
. Colibri - 10 ms Prometheus - 15 sec (Fig 1) x Prometheus [JJCPU [ RAM | Ingress bandwidth Egress bandwidth
= 99.39 100 99.58 99.87 100 L * * * * *
© - S~ 80 * *
@ 80- Q o *
- 5 601
I 60 95,62 74106 99,03 99|87 S
- S 40+ x
8 40 ~ yo)
N o
-C_TS 20 - (% 20 1
: L g B -
§ 0 i i i i O" — i i i i

ML Video360 XR 1A ML Video360 XR IA

e Qutperform second-level query across different workloads
e Not all metrics need high resolution query
e Some slight difference of requested resource can cause obvious performance gap

15



Profiling cost comparison

Overview of metric querying pipeline:
comparing with Prometheus and Kubernetes Metrics Server

Node
e R
kubelet —H——— | Metrics Server
_ y
cAdvisor ~ ~ - ~
| p th ,| Prometheus h
T rometnets Adapter kube-apiserver
- Y, L D y
cgroup

l - A

C ---------- ; Push analytic result -
. Colibri Job =t——— | Colibri APl server |

1

L} 1

A 24
-----------------------




Colibri’s resource costis low

Comparing the API interface/central manager

Metrics Prometheus Colibri
System
server | Adapter Operator API server
Image size (MB) 68.8 68.8 194 107
Node ) Query interval 15 sec N/A 15 sec | 10 ms N/A
kubelet Metrics Server CPU
{ ) 0.6 0.8 0.9 | 139 0.5
cAdvisor (%)
4 {Prometheus H Przr;:;?eerusJ_ (kube_ap,-se,verJ RAM 13 99 207 95() 12
cgroup 4 (MB)
| I bandwidth
b [N | HerE 870 1K | 12K | 703K | 191
Colibri Job ™, Colibri API server | (Byte/ S)
T— : ) E b d dth
- BHESS bandwl 968 2K 372 | 117K 184
(Byte/s)




Colibri’s resource costis low

Comparing the querying worker

Node

kubelet

K

| —
cAdvisor
T — —
cgroup
C - /| Pust
. Colibri Job =

Query function cAdvisor Colibri Job
Image size (MB) 83.1 48.1
Query interval | 15 sec | 10 msec 10 msec
CPU (%) 0.59 337 6.5 (1.93%)
RAM (MB) 29 1005 21 (2.09%)
Ingress bw (KB/s) | 0.05 63 1.8e-3 (<0.01%)
Egress bw (KB/s) | 0.85 911 0 (<0.01%)




Summary

e MEC QoS relies on accurate, lightweight profiling process

e Colibri is fine-grained (millisecond-level metric query) and lightweight
resource profiling system for MEC workload and environments

e Exploring more use cases to improve Colibri’s system integration and
scalability



Thank you !



